Math 2141: Calculus I

Credit hours:4 credit hoursPrerequisites:Placement in ACCUPLACER Grid 8 or MATH 2111 with a grade of C or better

Course Description

This course covers topics of differential and integral calculus including limits and continuity, higher-order derivatives, curve sketching, differentials, definite and indefinite integrals (areas and volumes), and applications of derivatives and integrals.

Course Objectives

- 1. Establish the fundamental theorems and applications of the calculus of single variable functions
- 2. Explore the concepts, properties, and aspects of the differential and integral calculus of single variable functions
- 3. Provide students with the mathematical tools necessary for more advanced STEM fields

Learning Outcomes

- 1. Calculate limits, derivatives, and indefinite integrals of various algebraic and trigonometric functions of a single variable
- 2. Apply the definition of continuity to pure and applied mathematics problems
- 3. Utilize the definition of the derivative to differentiate various algebraic and trigonometric functions of a single variable
- 4. Use the properties of limits and the derivative to analyze graphs of various functions of a single variable including transcendental functions
- 5. Employ the principles of the differential calculus to solve optimization problems, related rates exercises, and other applications
- 6. Calculate the area of regions in the plane with elementary Riemann sums
- 7. Utilize the Fundamental Theorem of Calculus and the techniques of integration, including u-substitution, to calculate the area of regions in the plane and the volume and surface area of solids of revolution

Course Topics

I. PRELIMINARY TOPICS

- A. Functions
- B. Classification of functions
- C. Operations on functions
- D. Composition of functions
- E. Inverse functions
- F. Trigonometric functions

II. THE LIMIT CONCEPT

- A. The definition of a limit at a point
 - 1. Intuitive approach
 - 2. Epsilon-Delta approach*
- B. Properties of limits
 - 1. Basic properties
 - 2. The Squeeze Theorem
 - 3. Important trigonometric limits
- C. One-sided limits

- D. Infinite limits
- E. Limits at infinity and asymptotes
- F. Continuity
 - 1. Continuity at a point
 - 2. Continuity on an interval
 - 3. The Intermediate Value Theorem

III. THE DERIVATIVE

- A. Slope of the secant line
- B. Slopes of tangents and instantaneous rates
- C. The definition of the derivative
 - 1. Terminology
 - 2. Notation
 - 3. Find derivatives using the limit definition
 - 4. Functions which are not differentiable (e.g. cusps and vertical asymptotes)
- D. The Power Rule as it applies to integer and rational exponents
- E. The Product Rule and the Quotient Rule
- F. Higher order derivatives
- G. Derivatives of elementary trigonometric functions
- H. The Chain Rule
 - 1. Functions raised to exponents
 - 2. Trigonometric functions
- I. Implicit Differentiation
 - 1. Related rates applications

IV. APPLICATIONS OF DIFFERENTIATION

- A. Finding and graphing tangent lines
- B. The Mean Value Theorem
- C. Curve Sketching
 - 1. Absolute and relative extrema
 - 2. Increasing and decreasing intervals
 - 3. The First Derivative Test
 - 4. Concavity and inflection points
 - 5. The Second Derivative Test
 - 6. Intercepts, asymptotes and symmetry
 - 7. Generating graphs using topics 1 through 6
- D. Optimization problems
- E. Linear approximation and differentials
- F. Newton's Method*

V. INTRODUCTION TO INTEGRATION

- A. Antiderivatives
 - 1. The definition of an indefinite integral
 - 2. Antiderivative formulas
- B. Summation notation
- C. Area
 - 1. Rectangle approximations for area under the curve
 - 2. Riemann sums
- D. The definition of a definite integral
 - 1. Terminology
 - 2. Notation
 - 3. Properties
- E. The Fundamental Theorem of Calculus
- F. Integration by Substitution

- 1. Functions raised to exponents
- 2. Trigonometric functions

VI. APPLICATIONS OF INTEGRATION

- A. Area
- B. The Mean Value Theorem for Integrals*
- C. Volume
 - 1. Disk and washer method
 - 2. Shell method
 - 3. Slice method*
- D. Arc length*
- E. Work*
- F. Liquid pressure and force*
- G. Center of mass*
- H. Centroid*

*Optional