Math 1139: Mathematics for Liberal Arts Students

Credit hours:3 creditsPrerequisites:Placement in ACCUPLACER Grid 3 or MATH 0100 with a grade of C or better or MATH 1025
with a grade of C or better.

Course Description

This course deals with the fundamentals of logic, set theory, probability and statistics.

Course Objectives

- 1. Identify methods to represent, organize, and distinguish sets
- 2. Apply rules of logic to evaluate claims
- 3. Compute probabilities of an event
- 4. Distinguish between methods for collecting, presenting, and interpreting data

Learning Outcomes

- 1. Understand set theory terminology, perform set operations, construct Venn diagrams with two and three sets, and solve application problems
- 2. Use connectives and negations to convert between symbolic statements and English
- 3. Construct truth tables for negation, conjunction, disjunction, conditional, and biconditional statements
- 4. Write equivalent and negated statements using DeMorgan's Laws and other equivalent forms
- 5. Determine the validity of symbolic arguments
- 6. Solve probability problems involving the fundamental counting principle, permutations, and combinations
- 7. Calculate odds and convert between probability and odds
- 8. Solve compound probability problems involving unions (or) and intersections (and)
- 9. Construct frequency distributions, histograms, and frequency polygons
- 10. Calculate statistical measures including mean, median, mode, midrange, range, and standard deviation
- 11. Solve problems involving the normal distribution

Course Topics

I. SETS

- A. Methods of specifying sets
 - 1. Descriptive notation
 - 2. Roster notation
- B. Set membership and notation
- C. Special sets
 - 1. Universal set
 - 2. Empty set
- D. Cardinality of a set
 - 1. One -to -one correspondence
 - 2. Finite
 - 3. Infinite
- E. Subsets
 - 1. Definition and notation
 - 2. Types
 - a. Proper

- b. Improper
- F. Operations on sets
 - 1. Union
 - 2. Intersection
 - 3. Complement
 - 4. Difference*
- G. Venn diagrams
- H. Cartesian product*
- I. Applications: voting coalitions

II. LOGIC

- A. Statements
 - 1. Definition
 - 2. Examples
- B. Quantifiers*
 - 1. Universal
 - 2. Existential
 - 3. Truth value of quantified statements
- C. Basic connectives
 - 1. Four types
 - a. Conjunction
 - b. Disjunction
 - c. Conditional
 - d. Biconditional
 - 2. Examples
 - 3. Combining connectives
 - 4. Truth tables
- D. Variants of the conditional
 - 1. Converse
 - 2. Inverse
 - 3. Contrapositive
- E. Additional connectives*
- F. Uses of truth tables
 - 1. Identification of tautologies, contradictions, contingencies
 - 2. Determination of the validity of an argument
 - 3. Truth tables and Venn diagrams*
- G. Syllogisms using Venn diagrams

III. COUNTING TECHNIQUES

- A. Multiplicative counting principle
- B. Permutations
 - 1. Permutation of n objects taken n at a time
 - 2. Permutations of n objects taken r at a time
 - 3. Permutations of objects some of which are alike
 - 4. Circular permutations*
- C. Combinations

IV. PROBABILIY

- A. Elementary experiments
- B. Definitions
 - 1. Sample space
 - 2. Random variable
 - 3. Event
 - 4. Probability of an event

- C. Simple examples and examples involving permutations and combinations
- D. Additive principle of probability
- E. Multiplicative principle of probability
- F. Mathematical expectation*

V. STATISTICS

- A. Three measures of central tendency (grouped & ungrouped)
 - 1. Mean
 - 2. Median
 - 3. Mode
- B. Measures of dispersion
 - 1. Range
 - 2. Variance
 - 3. Standard deviation
- C. Frequency distribution and frequency polygons
- D. Percentiles
- E. Normal curve
- F. Z scores

VI. NATURE OF COMPUTERS*

- A. History of computers
- B. Uses of computers
- C. Flow charts (incorporate with simple programming)
- D. Programming languages: introduction of programming language (e.g. Basic)
- E. Mathematical applications of a programming language (e.g. Basic)

*Optional