Math 1220: Scientific Programming

Credit hours: 3 credit hours
Prerequisites: MATH 1200 with a minimum grade of C or placement test

This course offers instruction in scientific programming using a current programming language. Problems, both
numerical and non-numerical, are programmed and solved using a personal computer.

1. Establish a firm foundation in the principals of scientific programming
2. Solve problems using algorithms
3. Become familiar with a current programming language

1. Understand and apply the principles of the five-step process for scientific programming (Problem-Solution-
Algorithm-Pseudocode-Source Code) by solving and documenting scientific programming projects

2. Employ basic C++ language and syntax to develop source code for scientific programming projects

3. Utilize fundamental principles of mathematical logic to define control structures for complex scientific
programming projects

4. Apply C++ structures for functions, input/output files, and arrays to solve large, complex, scientific programming
problems

5. Develop the professional skills to work as part of a scientific/engineering team by preparing technical
documentation for all parts of the five-step process for scientific programming

I. INTRODUCTION TO COMPUTING
A. Overview of computer technology
B. Introduction to the programming process
1. Problem definition to pseudocode
2. Source code
3. Compile/Link/Run

Il. PROBLEM DEFINITION TO PSEUDOCODE
A. Well-defined problem
B. Deriving a solution
C. Algorithm: writing a recipe to implement the solution
D. Pseudocode: almost a high-level language code

lll. WRITING THE SOURCE CODE: PART 1
A. Declaring variables
1. Data types and compatibility
B. Collecting data: input commands
C. Using commands and syntax to implement the pseudocode
1. Arithmetic operators
2. Elementary control loops



D. Displaying results: output commands
1. Formatting data
E. Documentation: include comments in the code

IV. RUNNING THE CODE
A. Compile/Link/Run
B. Debugging

V. WRITING THE SOURCE CODE: PART I

A. Using predefined functions
User-defined functions
Local vs. global variables and constants
Advanced techniques for using data in functions
Input/output via data files

moOOw

VI. CONTROL LOGIC AND COMMANDS: MORE APPLICATIONS
A. If-else statements
B. Do-while loops
C. For-statements

VII. LIBRARIES OF FUNCTIONS
A. Predefined libraries
B. User defined libraries

VIII. Arrays
A. Introduction to arrays
B. Arraysin functions
C. Multidimensional arrays



